(-x^2+4x-2)=(x^2+3x-8)

Simple and best practice solution for (-x^2+4x-2)=(x^2+3x-8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-x^2+4x-2)=(x^2+3x-8) equation:



(-x^2+4x-2)=(x^2+3x-8)
We move all terms to the left:
(-x^2+4x-2)-((x^2+3x-8))=0
We get rid of parentheses
-x^2+4x-((x^2+3x-8))-2=0
We calculate terms in parentheses: -((x^2+3x-8)), so:
(x^2+3x-8)
We get rid of parentheses
x^2+3x-8
Back to the equation:
-(x^2+3x-8)
We add all the numbers together, and all the variables
-1x^2+4x-(x^2+3x-8)-2=0
We get rid of parentheses
-1x^2-x^2+4x-3x+8-2=0
We add all the numbers together, and all the variables
-2x^2+x+6=0
a = -2; b = 1; c = +6;
Δ = b2-4ac
Δ = 12-4·(-2)·6
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-7}{2*-2}=\frac{-8}{-4} =+2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+7}{2*-2}=\frac{6}{-4} =-1+1/2 $

See similar equations:

| 5+3(2x+1)=-5+(3x+3) | | 20/x=30-x | | x-x+6=19 | | 25x/x-25=60 | | 9(90-x)=4(180-x)-20 | | x^2+3x^2+1,5x-0,5=1,5x+3.5 | | 6x-x=25-x | | 9^x+3^2x-1=36 | | m+2m+5m=-32 | | 3x+20+(2x-15)=180 | | 3x-20+2x+15=180 | | 5a+5=8 | | 8x-202=68-7x | | 5-72/f=1.3 | | 3x=109-9x | | 1.5÷2x=0.25 | | 5y-2/6=35 | | (2x-9)(-x+2)=0 | | 11/6=n+(7/9) | | 7y/5-4=y-4 | | -4+-9x+3x2+x3=0 | | a+31÷2=5 | | 10+5b=20 | | 2y+5/7=26/5-7 | | 3n+10/10=n+3/3 | | (X+15)(5x-7)=0 | | Z^3+3-3i=0 | | 144x^2+288x-145=0 | | 66+y=7.6 | | 11x+4=31 | | 4x=3(35.x) | | -7x+10/2=-3x |

Equations solver categories